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Sursnary: The title compound was synthesized by thermal reaction of 3_phosphoranylidene- 
amino-l,&methano[lO]annulene with 2-chlorotropone in a single step. The examination of 
%II NM2 spectrum revealed that there is little contribution of peripheral 18-a electron 
conjugation, but it is rather composed of 1-azaazulene and methano[lO]annulene moieties. 

During the course of our investigation in the field of (vinylimino)phosphorane, we 

were confronted with the preparation of l-azaazulene* and their vinylogues, methano- 

cycloundeca[b]pyrroles.g Previously, we have reported the preparation of novel 3-phos- 

phoranylideneamino- and 2-phosphoranylideneamino-1,6-methano[lO]annulene (1a.b) and 

(2a,b), and their reaction with a,S-unsaturated ketones.’ The compounds la and 2a, 

prepared in situ, are the first examples of (vinyllmino)phosphoranes, the vinyl group of 

which is a part of aranatic perimeter, to undergo an enamine-type alkylation and follow- 

ing aza-Wittig reaction giving pyridine ring system.. Although the syntheses and 

aromatic characters of l,&methano[ lO]annulenes condensed with benzene(s)v*e and 

heterocycles’ have been studied, azulene-annelated canpound thus far obtained is, to our 

best knowledge, a peripheral 18-a electronic diatropic compound, azuleno[2,1-b]-4,9- 

methano[ll]annulenium ion.“ In search for precise reactivities of l,B-methano[lO]- 

annulene nucleus (3) of la and 2a as well as interests in the l,&methano[lO]annulene con- 

densed with nonbenzenoid aromatic v-systeaqD we investigated the reaction of la and 2a 

with 2-chlorotropone (4) and spectroscopic properties of the resulting l,t+methanocyclo- 

deca[blcyclohepta[d]pyrrole (8). 

la,b 

Scheme 1. 

2a,b 3 (n-HOMO) 

The canpound la- was prepared in situ by the Staudinger reactionZa of 3-azido-1,6- 

methano[lO]annulene (106 mg, 0.58 nxnol) with tributylphosphlne (138 mg, 0.84 nznol) in dry 

toluene (4 ml) at room temperature for 1 h.d To this solution was added 4 (122 mg, 0.47 

mnol) and triethylamine (292 mg, 2.0 mnol), and the mixture was heated under reflux for 5h 

to give 8 and 3-(2-troponyl)amino-1,6_methano[lO]annulene (12) in 5% and 23% Yields (based 
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on 4 used), respectively, after separation by TLC on silica gel (hexane/AcOEt: l/l). Cn 

the contrary, the reaction of 4 with 2a, which was prepared in situ from 2-azido-l,B- 

methano[lO]annulene and tributylphosphine under the conditions similar to the case of la, 

gave only 2-(2-troponyl)amlno-l,B-methano[lO]annulene (13) in 8% yield (Scheme 2). The 

evidence for the structures of new compounds, 8, 12, and 13 was provided by spectral 

data.a’*l’ 

The postulated pathways for the formation of 8 and 12 (or 13) are also shown in 

Scheme 2.= The enamlne-type alkylatlon of the iminophosphorane la on C-7 of 4 gives the 

intermediate 5. The hydrogen migration in 5 regenerates imlnophosphorsne 8, which un- 

dergoes intramolecular aza-Wittig reaction and following dehydrochlorination to give 8. 

On the other hand, nucleophilic attack of the imino-nitrogen also occurs on C-2 or C-7 of 

4 to give 0 or 10. The nucleophlllc substitution onto tropone carrying mobile sub- 

stituent at C-2 have been known to take place either on C-2 (normal substitution) or C-7 

(abnormal substitution) to give X-substituted tropone.a3 Thus, it is not concluded a 

priori whether 0 or 10 is prefered. The hydrogen transfer in 0 and following dech- 

lorination or direct dechlorlnataion of 10 gives 11, the hydrolysis of which results in 

the formation of 12 under workup conditions. The compound 13 is also produced in a 

sumilar pathway. 

One may consider that the enamlne alkylatlon leading to 5 is frontier orbital con- 

trolled and substitution reaction giving 0 (or 10) is charge controlled reaction.=. 

Regarding l,8-methano[l0lannulene, the substantial transannular interaction between the 

c 6 

I 9: X=Cl, Y=H 
8 

10: X=H, Y =Cl 

7 

Schemea. 
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bridgehead C-l and C-6 positions permits description of it as homonaphthalene, and leads 

to a large a-HOMO coefficient at C-2 than at C-3 as depicted in 3 (Scheme l),X6SXE thereby 

facilitating nucleophilic attack at the former. As previously reported, the I% NMR 

spectra revealed that the signals of C-2 in lb (6 118.3) and C-3 in 2b (6 116.8) are shifted 

toward upfield by 10.9 ppm and 10.0 ppm, respectively,. as compared to the corresponding 

carbon atoms of l$-methano[lO]annulene (C-2: 6 129.2; C-3: 6 12f3.8).17 Thus, it is sug- 

gested that the intrinsic large v-HOMO coefficient of C-2 is much enhanced by introduc- 

tion of iminophosphorane moiety in la, as compared to the intrinsic small one of C-3 in 

2a. Consequently, the enamine alkylation process leading to 8 could canpete with sub- 

stitution reaction giving 12 for la. In the case of 2a, only substitution reaction giving 

13 occurred. 

Unambiguous proton assignment for 8 provides no indication of an equilibrium between 

8 and its norcaradiene tautomer.aP The average chemical shift (&“=7.45) of methano- 

[lO]annulene moiety of 8 is slightly shifted to the lower field (0.25 ppn) than that of 2,3- 

benzo-1,6-methano[lO]annulene (&~y=7.20).D The average chemical shift (6,,=8.55) of aza- 

azulene moiety also shifted to the lower field (0.43 ppm) than that of 1-azaazulene 

LG8.13). == These are partially due to the magnetic anisotropy from the adjacent ring 

system to each other. The weakening of the diamagnetic ring current in the methano- 

[lO]annulene ring of 8 expected as a result of 1-azaazulene-annelation is most clearly 

manifested in the signals of the bridge protons (6,,=0.75) for they are shielded similarly 

to that in 2,3-benzo-1,6-methsno[lO]annulene (~,,=0.66)“, but less shielded than that of 

1,6-methano[10]annulene.Lg More finding such as the relative large vicinal coupling con- 

stants, J3-. (10.25 Hz) and Jv-,, (10.28 Hz), as ccmpared to Jn-= (6.34 Hz) and J+s (6.84 Hz) 

indicates a double-bond fixation in methano[lO]annulene moiety. on the contrary, the 

same vicinal coupling constant (J=9.7 Hz) for JLoMX1, JII-ln, Jln-ls, and J13--1. in 

azaazulene moiety suggests that the TI bonds in azaazulene moiety are delocalized as 

depicted in 8A. The UV spectrun is consistent with prolonged conjugation as in the case 

of benzo[e]cyclohept[b]indole blWX (log E) 268 (4.26), 315 (4.87). 328 (4&l), 342 (4.55), 356 

(3.99), 377 (3.96), 388 (3.99), 404 (3.28), 560 (2.87), 810 (2.80)].=” The hypsochranic shift is 

observed in acidic media,%= being in good accordance with the behavior of 1-azaazulene. 

The chemical shifts of IH NMlI spectrun in CDC13-CF&C& exhibited slight down field shift 

(6,,=0.13) of peripheral protons of methano[lO]annulene moiety and remarkable down field 

shift (6 ,=0.3-0.4) of azaazulene moiety. Accordingly, the protonation onto 8 occurred 

at the nitrogen atom in acidic solution, and the contribution of the canonical structure 

N_ A 

Scheme 3. 
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I33 to the resonance hybrid becomes important. 
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